Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
Add more filters

Complementary Medicines
Publication year range
2.
Phytomedicine ; 126: 155254, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342016

ABSTRACT

BACKGROUND: The gut-brain axis (GBA) plays a central role in cerebral ischaemia-reperfusion injury (CIRI). Rhubarb, known for its purgative properties, has demonstrated protective effects against CIRI. However, it remains unclear whether this protective effect is achieved through the regulation of the GBA. AIM: This study aims to investigate the mechanism by which rhubarb extract improves CIRI by modulating the GBA pathway. METHODS: We identified the active components of rhubarb extract using LC-MS/MS. The model of middle cerebral artery occlusion (MCAO) was established to evaluate the effect of rhubarb extract. We conducted 16S rDNA sequencing and untargeted metabolomics to analyze intestinal contents. Additionally, we employed HE staining, TUNEL staining, western blot, and ELISA to assess intestinal barrier integrity. We measured the levels of inflammatory cytokines in serum via ELISA. We also examined blood-brain barrier (BBB) integrity using Evans blue (EB) penetration, transmission electron microscopy (TEM), western blot, and ELISA. Neurological function scores and TTC staining were utilized to evaluate neurological outcomes. RESULTS: We identified twenty-six active components in rhubarb. Rhubarb extract enhanced α-diversity, reduced the abundance of Enterobacteriaceae, and partially rectified metabolic disorders in CIRI rats. It also ameliorated pathological changes, increased the expressions of ZO-1, Occludin, and Claudin 1 in the colon, and reduced levels of LPS and d-lac in serum. Furthermore, it lowered the levels of IL-1ß, IL-6, IL-10, IL-17, and TNF-α in serum. Rhubarb extract mitigated BBB dysfunction, as evidenced by reduced EB penetration and improved hippocampal microstructure. It upregulated the expressions of ZO-1, Occludin, Claudin 1, while downregulating the expressions of TLR4, MyD88, and NF-κB. Similarly, rhubarb extract decreased the levels of IL-1ß, IL-6, and TNF-α in the hippocampus. Ultimately, it reduced neurological function scores and cerebral infarct volume. CONCLUSION: Rhubarb effectively treats CIRI, potentially by inhibiting harmful bacteria, correcting metabolic disorders, repairing intestinal barrier function, alleviating BBB dysfunction, and ultimately improving neurological outcomes.


Subject(s)
Brain Ischemia , Metabolic Diseases , Neuroprotective Agents , Reperfusion Injury , Rheum , Rats , Animals , Neuroprotection , Rheum/metabolism , Occludin/metabolism , Interleukin-6 , Tumor Necrosis Factor-alpha/genetics , Brain-Gut Axis , Chromatography, Liquid , Claudin-1 , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Tandem Mass Spectrometry , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Evans Blue/therapeutic use , Reperfusion Injury/metabolism , Metabolic Diseases/drug therapy , Infarction, Middle Cerebral Artery/drug therapy
3.
Nutrients ; 16(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398830

ABSTRACT

The escalating prevalence of metabolic and cardiometabolic disorders, often characterized by oxidative stress and chronic inflammation, poses significant health challenges globally. As the traditional therapeutic approaches may sometimes fall short in managing these health conditions, attention is growing toward nutraceuticals worldwide; with compounds being obtained from natural sources with potential therapeutic beneficial effects being shown to potentially support and, in some cases, replace pharmacological treatments, especially for individuals who do not qualify for conventional pharmacological treatments. This review delves into the burgeoning field of nutraceutical-based pharmacological modulation as a promising strategy for attenuating oxidative stress and inflammation in metabolic and cardiometabolic disorders. Drawing from an extensive body of research, the review showcases various nutraceutical agents, such as polyphenols, omega-3 fatty acids, and antioxidants, which exhibit antioxidative and anti-inflammatory properties. All these can be classified as novel nutraceutical-based drugs that are capable of regulating pathways to mitigate oxidative-stress- and inflammation-associated metabolic diseases. By exploring the mechanisms through which nutraceuticals interact with oxidative stress pathways and immune responses, this review highlights their potential to restore redox balance and temper chronic inflammation. Additionally, the challenges and prospects of nutraceutical-based interventions are discussed, encompassing bioavailability enhancement, personalized treatment approaches, and clinical translation. Through a comprehensive analysis of the latest scientific reports, this article underscores the potential of nutraceutical-based pharmacological treatment modulation as a novel avenue to fight oxidative stress and inflammation in the complex landscape of metabolic disorders, particularly accentuating their impact on cardiovascular health.


Subject(s)
Cardiovascular Diseases , Metabolic Diseases , Humans , Dietary Supplements , Oxidative Stress , Antioxidants/pharmacology , Inflammation/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy
4.
Nutrients ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337678

ABSTRACT

Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Experimental , Gastrointestinal Diseases , Metabolic Diseases , Rats , Animals , Bees , Diabetes Mellitus, Experimental/drug therapy , Fatty Acids/therapeutic use , Gastrointestinal Diseases/drug therapy , Metabolic Diseases/drug therapy , Cardiovascular Diseases/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Phytomedicine ; 125: 155327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295659

ABSTRACT

BACKGROUND: Considerable researches have directed toward metabolic disorders caused by sleep restriction (SR). SR-induced disruption of circadian metabolic rhythmicity is identified as an important pathophysiological mechanism. The flavonoid pterostilbene (PTE) is abundant in the traditional Chinese medicine dragon's blood with protective efficacy against obesity-related metabolic dysfunctions. Our previous study found that PTE ameliorates exercise intolerance and clock gene oscillation in the skeletal muscles subjected to SR. PURPOSE: This study aimed to explore whether PTE improves SR-induced metabolic disorders and delineate the relationship between PTE and the circadian clock. STUDY DESIGN AND METHODS: Two hundred male C57/B6J mice were kept awake for 20 h/d over five consecutive days and concurrently gavaged with 50, 100, or 200 mg/kg·bw/d PTE. Food consumption and body weight were monitored, and the metabolic status of the mice was evaluated by performing OGTT and ITT, measuring the serum lipid profiles and liver histopathology in response to SR. Daily behavior was analyzed by Clocklab™. The circadian rhythms of the liver clock genes and metabolic output genes were evaluated by cosine analysis. Binding between PTE and RORα/γ or NR1D1/2 was investigated by molecular docking. A luciferase reporter assay was used to determine the impact of PTE on Bmal1 transcription in SR-exposed mice co-transfected with Ad-BMAL1-LUC plus Ad-RORγ-mCherry or Ad-NR1D1-EGFP. RESULTS: PTE significantly ameliorated abnormal glucose and lipid metabolism (p < 0.05) in SR-exposed mice. PTE improved circadian behavior (p < 0.05) and rescued the circadian rhythm oscillation of the liver clock (p < 0.05) and metabolic output genes (p < 0.05) under SR condition. Molecular docking disclosed that PTE might interact with RORs, and PTE was found to increase Bmal1 promoter luciferase activity with RORE elements in the presence of Ad-RORγ-mCherry (p < 0.05). CONCLUSIONS: PTE may protect against SR-induced metabolic disorders by directly modulating RORγ to maintain circadian metabolic rhythm. The findings provide valuable insights into the potential use of PTE in the treatment of metabolic disorders associated with disruptions in the circadian rhythm.


Subject(s)
ARNTL Transcription Factors , Metabolic Diseases , Male , Animals , Mice , ARNTL Transcription Factors/genetics , Molecular Docking Simulation , Circadian Rhythm/genetics , Sleep , Metabolic Diseases/drug therapy , Luciferases
6.
J Ethnopharmacol ; 322: 117672, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38159826

ABSTRACT

AIM OF THE STUDY: Naoxinqing (NXQ) tablets are derived from persimmon leaves and are widely used in China for promoting blood circulation and removing blood stasis in China. We aimed to explore whether NXQ has the therapeutic effect on ischemic stroke and explored its possible mechanism. MATERIALS AND METHODS: The cerebral artery occlusion/reperfusion (MCAO/R) surgery was used to establish the cerebral ischemic/reperfusion rat model. NXQ (60 mg/kg and 120 mg/kg) were administered orally. The TTC staining, whole brain water content, histopathology staining, immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA) and Western blot analyses were performed to determine the therapeutical effect of NXQ on MCAO/R rats. RESULTS: The study demonstrated that NXQ reduced the cerebral infarction volumes and neurologic deficits in MCAO/R rats. The neuroprotective effects of NXQ were accompanied by inhibited oxidative stress and inflammation. The nerve regeneration effects of NXQ were related to regulating the AMPKα/NAMPT/SIRT1/PGC-1α pathway. CONCLUSION: In summary, our results revealed that NXQ had a significant protective effect on cerebral ischemia-reperfusion injury in rats. This study broadens the therapeutic scope of NXQ tablets and provides new neuroprotective mechanisms of NXQ as an anti-stroke therapeutic agent.


Subject(s)
Brain Ischemia , Metabolic Diseases , Neuroprotective Agents , Reperfusion Injury , Stroke , Rats , Animals , Sirtuin 1/metabolism , Stroke/drug therapy , Brain , Brain Ischemia/metabolism , Metabolic Diseases/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism
7.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069347

ABSTRACT

Many inherited metabolic disorders (IMDs), including disorders of amino acid, fatty acid, and carbohydrate metabolism, are treated with a dietary reduction or exclusion of certain macronutrients, putting one at risk of a reduced intake of micronutrients. In this review, we aim to provide available evidence on the most common micronutrient deficits related to specific dietary approaches and on the management of their deficiency, in the meanwhile discussing the main critical points of each nutritional supplementation. The emerging concepts are that a great heterogeneity in clinical practice exists, as well as no univocal evidence on the most common micronutrient abnormalities. In phenylketonuria, for example, micronutrients are recommended to be supplemented through protein substitutes; however, not all formulas are equally supplemented and some of them are not added with micronutrients. Data on pyridoxine and riboflavin status in these patients are particularly scarce. In long-chain fatty acid oxidation disorders, no specific recommendations on micronutrient supplementation are available. Regarding carbohydrate metabolism disorders, the difficult-to-ascertain sugar content in supplementation formulas is still a matter of concern. A ketogenic diet may predispose one to both oligoelement deficits and their overload, and therefore deserves specific formulations. In conclusion, our overview points out the lack of unanimous approaches to micronutrient deficiencies, the need for specific formulations for IMDs, and the necessity of high-quality studies, particularly for some under-investigated deficits.


Subject(s)
Metabolic Diseases , Trace Elements , Humans , Diet , Dietary Supplements , Micronutrients/therapeutic use , Metabolic Diseases/drug therapy , Fatty Acids
8.
J Agric Food Chem ; 71(51): 20701-20712, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38088361

ABSTRACT

Purple Pennisetum (Pennisetum purpureum Schumach), a hybrid between Taihucao No. 2 and the local wild species of purple Pennisetum, has dark red stems and leaves due to its anthocyanin content. This study explores the potential of purple napiergrass extracts (PNE) in alleviating obesity and metabolic disorders induced by a high-fat diet in mice, where 50% of the caloric content is derived from fat. Mice were orally administered low-dose or high-dose PNE alongside a high-fat diet. Experimental findings indicate that PNE attenuated weight gain, reduced liver, and adipose tissue weight, and lowered blood cholesterol, triglyceride, low-density lipoprotein, and blood sugar levels. Stained sections showed that PNE inhibited lipid accumulation and fat hypertrophy in the liver. Immunoblotting analysis suggested that PNE improved the inflammatory response associated with obesity, dyslipidemia, and hyperglycemia induced by a high-fat diet. Furthermore, PNE potentially functions as a PPAR-γ agonist, increasing the adiponectin (ADIPOQ) concentration and suppressing inflammatory factors, while elevating the anti-inflammatory factor interleukin-10 (IL-10) in the liver. PNE-treated mice showed enhanced activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and AMP-activated protein kinase (AMPK) pathways and increased fatty acid oxidation and liver lipolysis. In conclusion, this study elucidated the mechanisms underlying the anti-inflammatory, PI3K/Akt, and AMPK pathways in a high-fat diet-induced obesity model. These findings highlight the potential of PNE in reducing weight, inhibiting inflammation, and improving blood sugar and lipid levels, showing the potential for addressing obesity-related metabolic disorders in humans.


Subject(s)
Metabolic Diseases , Pennisetum , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Pennisetum/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Diet, High-Fat/adverse effects , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Blood Glucose/metabolism , Plant Extracts/pharmacology , Obesity/drug therapy , Obesity/etiology , Liver/metabolism , Triglycerides/metabolism , Water/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Anti-Inflammatory Agents/metabolism , Mice, Inbred C57BL
9.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003703

ABSTRACT

α-Amylase is a generally acknowledged molecular target of a distinct class of antidiabetic drugs named α-glucosidase inhibitors. This class of medications is scarce and rather underutilized, and treatment with current commercial drugs is accompanied by unpleasant adverse effects. However, mammalian α-amylase inhibitors are abundant in nature and form an extensive pool of high-affinity ligands that are available for drug discovery. Individual compounds and natural extracts and preparations are promising therapeutic agents for conditions associated with impaired starch metabolism, e.g., diabetes mellitus, obesity, and other metabolic disorders. This review focuses on the structural diversity and action mechanisms of active natural products with inhibitory activity toward mammalian α-amylases, and emphasizes proteinaceous inhibitors as more effective compounds with significant potential for clinical use.


Subject(s)
Metabolic Diseases , alpha-Amylases , Animals , Humans , alpha-Amylases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/therapeutic use , Glycoside Hydrolase Inhibitors/chemistry , Metabolic Diseases/drug therapy , alpha-Glucosidases/chemistry , Plant Extracts/therapeutic use , Mammals/metabolism
10.
Int Rev Neurobiol ; 169: 259-315, 2023.
Article in English | MEDLINE | ID: mdl-37482395

ABSTRACT

Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.


Subject(s)
Dystonia , Dystonic Disorders , Hepatolenticular Degeneration , Metabolic Diseases , Humans , Dystonic Disorders/genetics , Metabolic Diseases/drug therapy , Metabolic Networks and Pathways
11.
Nutrients ; 15(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37447347

ABSTRACT

Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.


Subject(s)
Catechin , Diabetes Mellitus, Type 2 , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Tea , Diabetes Mellitus, Type 2/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Catechin/pharmacology , Catechin/therapeutic use , Obesity/complications , Antioxidants/pharmacology , Antioxidants/therapeutic use , Polyphenols/therapeutic use , Metabolic Diseases/drug therapy , Metabolic Diseases/complications
12.
Biomed Pharmacother ; 164: 114919, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37302318

ABSTRACT

Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of "modulating liver, starting pivot and cleaning turbidity". FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Metabolic Diseases , Mice , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Lipid Metabolism , Mitochondrial Dynamics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Myocytes, Cardiac , Metabolic Diseases/drug therapy
13.
Medicina (Kaunas) ; 59(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37374226

ABSTRACT

Metabolic syndrome is a multifaceted pathophysiologic condition that is largely caused by an imbalance between caloric intake and energy expenditure. The pathogenesis of metabolic syndrome is determined by an individual's genetic/epigenetics and acquired factors. Natural compounds, notably plant extracts, have antioxidant, anti-inflammatory, and insulin-sensitizing properties and are considered to be a viable option for metabolic disorder treatment due to their low risk of side effects. However, the limited solubility, low bioavailability, and instability of these botanicals hinder their performance. These specific limitations have prompted the need for an efficient system that reduces drug degradation and loss, eliminates unwanted side effects, and boosts drug bioavailability, as well as the percentage of the drug deposited in the target areas. The quest for an enhanced (effective) drug delivery system has led to the formation of green-engineered nanoparticles, which has increased the bioavailability, biodistribution, solubility, and stability of plant-based products. The unification of plant extracts and metallic nanoparticles has helped in the development of new therapeutics against metabolic disorders such as obesity, diabetes mellitus, neurodegenerative disorders, non-alcoholic fatty liver, and cancer. The present review outlines the pathophysiology of metabolic diseases and their cures with plant-based nanomedicine.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Metabolic Diseases , Metabolic Syndrome , Metal Nanoparticles , Nanoparticles , Humans , Tissue Distribution , Nanoparticles/therapeutic use , Metabolic Diseases/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
14.
Biomed Pharmacother ; 161: 114545, 2023 May.
Article in English | MEDLINE | ID: mdl-36948135

ABSTRACT

The public health issue of glucolipid metabolic disorders (GLMD) has grown significantly, posing a grave threat to human wellness. Its prevalence is rising yearly and tends to affect younger people. Metaflammation is an important mechanism regulating body metabolism. Through a complicated multi-organ crosstalk network involving numerous signaling pathways such as NLRP3/caspase-1/IL-1, NF-B, p38 MAPK, IL-6/STAT3, and PI3K/AKT, it influences systemic metabolic regulation. Numerous inflammatory mediators are essential for preserving metabolic balance, but more research is needed to determine how they contribute to the co-morbidities of numerous metabolic diseases. Whether controlling the inflammatory response can influence the progression of GLMD determines the therapeutic strategy for such diseases. This review thoroughly examines the role of metaflammation in GLMD and combs the research progress of related therapeutic approaches, including inflammatory factor-targeting drugs, traditional Chinese medicine (TCM), and exercise therapy. Multiple metabolic diseases, including diabetes, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, and others, respond therapeutically to anti-inflammatory therapy on the whole. Moreover, we emphasize the value and open question of anti-inflammatory-based means for treating GLMD.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Phosphatidylinositol 3-Kinases , Anti-Inflammatory Agents/therapeutic use , Metabolic Diseases/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Inflammation Mediators
15.
Molecules ; 28(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36985850

ABSTRACT

Dioscorea spp. belongs to the Dioscoreaceae family, known as "yams", and contains approximately 600 species with a wide distribution. It is a major food source for millions of people in tropical and subtropical regions. Dioscorea has great medicinal and therapeutic capabilities and is a potential source of bioactive substances for the prevention and treatment of many diseases. In recent years, increasing attention has been paid to the phytochemicals of Dioscorea, such as steroidal saponins, polyphenols, allantoin, and, in particular, polysaccharides and diosgenin. These bioactive compounds possess anti-inflammatory activity and are protective against a variety of inflammatory diseases, such as enteritis, arthritis, dermatitis, acute pancreatitis, and neuroinflammation. In addition, they play an important role in the prevention and treatment of metabolic diseases, including obesity, dyslipidemia, diabetes, and non-alcoholic fatty liver disease. Their mechanisms of action are related to the modulation of a number of key signaling pathways and molecular targets. This review mainly summarizes recent studies on the bioactive compounds of Dioscorea and its treatment of inflammatory and metabolic diseases, and highlights the underlying molecular mechanisms. In conclusion, Dioscorea is a promising source of bioactive components and has the potential to develop novel natural bioactive compounds for the prevention and treatment of inflammatory and metabolic diseases.


Subject(s)
Dioscorea , Metabolic Diseases , Pancreatitis , Saponins , Humans , Dioscorea/chemistry , Acute Disease , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Saponins/chemistry , Metabolic Diseases/drug therapy
16.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834734

ABSTRACT

Metabolic diseases have become a serious threat to human health worldwide. It is crucial to look for effective drugs from natural products to treat metabolic diseases. Curcumin, a natural polyphenolic compound, is mainly obtained from the rhizomes of the genus Curcuma. In recent years, clinical trials using curcumin for the treatment of metabolic diseases have been increasing. In this review, we provide a timely and comprehensive summary of the clinical progress of curcumin in the treatment of three metabolic diseases, namely type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). The therapeutic effects and underlying mechanisms of curcumin on these three diseases are presented categorically. Accumulating clinical evidence demonstrates that curcumin has good therapeutic potential and a low number of side effects for the three metabolic diseases. It can lower blood glucose and lipid levels, improve insulin resistance and reduce inflammation and oxidative stress. Overall, curcumin may be an effective drug for the treatment of T2DM, obesity and NAFLD. However, more high-quality clinical trials are still required in the future to verify its efficacy and determine its molecular mechanisms and targets.


Subject(s)
Curcumin , Diabetes Mellitus, Type 2 , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Diabetes Mellitus, Type 2/drug therapy , Curcumin/therapeutic use , Non-alcoholic Fatty Liver Disease/metabolism , Metabolic Diseases/drug therapy , Obesity/drug therapy
17.
J Ethnopharmacol ; 303: 115967, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36442762

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodes lancea (Thunb.) DC. is a Chinese herb that has been commonly used to treat spleen-deficiency diarrhea (SDD) in China for over a thousand years. However, the underlying mechanism of its antidiarrheal activity is not fully understood. AIM OF THE STUDY: The antidiarrheal effects of the ethanol extract of deep-fried A. lancea rhizome (EEDAR) due to spleen deficiency induced by folium sennae (SE) were determined on the regulation of the short-chain fatty acid (SCFA) metabonomics induced by the intestinal flora. MATERIALS AND METHODS: The effects of EEDAR on a SE-induced mouse model of SDD were evaluated by monitoring the animal weight, fecal water content, diarrhea-grade rating, goblet cell loss, and pathological changes in the colon. The expression of inflammatory factors (tumor necrosis factor [TNF]-α, interleukin [IL]-1ß, IL-6, IL-10), aquaporins (AQP3, AQP4, and AQP8), and tight junction markers (ZO-1, occludin, claudin-1) in colon tissues were determined using quantitative polymerase chain reaction and western blotting. SCFA metabonomics in the feces of mice treated with EEDAR was evaluated using gas chromatography-mass spectrometry. Furthermore, 16S rDNA sequencing was used to determine the effect of EEDAR on the intestinal flora of SDD mice, and fecal microbiota transplantation (FMT) was used to confirm whether the intestinal flora was essential for the anti-SDD effect of EEDAR. RESULTS: Treatment with EEDAR significantly improved the symptoms of mice with SDD by inhibiting the loss of colonic cup cells, alleviating colitis, and promoting the expression of AQPs and tight junction markers. More importantly, the effect of EEDAR on the increase of SCFA content in mice with SDD was closely related to the gut microbiota composition. EEDAR intervention did not significantly improve intestinal inflammation or the barrier of germ-free SDD mice, but FMT was effective. CONCLUSION: EEDAR alleviated SE-induced SDD in mice, as well as the induced SCFA disorder by regulating the imbalance of the intestinal microbiota.


Subject(s)
Atractylodes , Gastrointestinal Microbiome , Metabolic Diseases , Splenic Diseases , Mice , Animals , Atractylodes/chemistry , Antidiarrheals/pharmacology , Rhizome , Diarrhea/drug therapy , Diarrhea/metabolism , Splenic Diseases/drug therapy , Fatty Acids, Volatile/metabolism , Colon/metabolism , Disease Models, Animal , Metabolic Diseases/drug therapy , Mice, Inbred C57BL , Dextran Sulfate
18.
Biol Trace Elem Res ; 201(5): 2222-2239, 2023 May.
Article in English | MEDLINE | ID: mdl-35771339

ABSTRACT

The application of natural and synthetic boron-containing compounds (BCC) in biomedical field is expanding. BCC have effects in the metabolism of living organisms. Some boron-enriched supplements are marketed as they exert effects in the bone and skeletal muscle; but also, BCC are being reported as acting on the enzymes and transporters of membrane suggesting they could modify the carbohydrate metabolism linked to some pathologies of high global burden, as an example is diabetes mellitus. Also, some recent findings are showing effects of BCC on lipid metabolism. In this review, information regarding the effects and interaction of these compounds was compiled, as well as the potential application for treating human metabolic disorders is suggested.


Subject(s)
Boron , Metabolic Diseases , Humans , Boron/therapeutic use , Boron Compounds/therapeutic use , Boron Compounds/pharmacology , Lipid Metabolism , Metabolic Diseases/diagnosis , Metabolic Diseases/drug therapy , Metabolic Diseases/prevention & control
19.
Comb Chem High Throughput Screen ; 26(5): 892-905, 2023.
Article in English | MEDLINE | ID: mdl-35786331

ABSTRACT

For several decades, studies have reported that n-3 polyunsaturated fatty acids (PUFAs) play a beneficial role in cardiovascular, immune, cognitive, visual, mental and metabolic health. The mammalian intestine is colonized by microbiota, including bacteria, archaea, viruses, protozoans, and fungi. The composition of the gut microbiota is influenced by long-term dietary habits, disease-associated dysbiosis, and the use of antibiotics. Accumulating evidence suggests a relationship between n-3 PUFAs and the gut microbiota. N-3 PUFAs can alter the diversity and abundance of the gut microbiome, and gut microbiota can also affect the metabolism and absorption of n-3 PUFAs. Changes in the populations of certain gut microbiota can lead to negative effects on inflammation, obesity, and metabolic diseases. An imbalanced consumption of n-3/n-6 PUFAs may lead to gut microbial dysbiosis, in particular, a significant increase in the ratio of Firmicutes to Bacteroidetes, which eventually results in being overweight and obesity. N-3 PUFA deficiency disrupts the microbiota community in metabolic disorders. In addition, accumulating evidence indicates that the interplay between n-3 PUFAs, gut microbiota, and immune reactions helps to maintain the integrity of the intestinal wall and interacts with host immune cells. Supplementation with n-3 PUFAs may be an effective therapeutic measure to restore gut microbiota homeostasis and correct metabolic disturbances associated with modern chronic diseases. In particular, marine extracts from seaweed contain a considerable dry weight of lipids, including n-3 PUFAs such as eicosapentaenoic acid (EPA, C20: 5) and docosahexaenoic acid (DHA, C22: 6). This review describes how gut microbiota function in intestinal health, how n-3 PUFAs interact with the gut microbiota, and the potential of n-3 PUFAs to influence the gut-brain axis, acting through gut microbiota composition.


Subject(s)
Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Metabolic Diseases , Dysbiosis/drug therapy , Dysbiosis/microbiology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Unsaturated , Metabolic Diseases/drug therapy , Obesity/drug therapy , Obesity/metabolism , Humans
20.
Nutrients ; 14(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364926

ABSTRACT

Ascophyllum nodosum and Fucus vesiculosus both contain unique polyphenols called phlorotannins. Phlorotannins reportedly possess various pharmacological activities. A previous study reported that the activity of phlorotannin is strongly correlated with the normalization of metabolic function, and phlorotannins are extremely promising nutrients for use in the treatment of metabolic syndrome. To date, no study has explored the antihyperlipidemic effects of phlorotannins from A. nodosum and F. vesiculosus in animal models. Therefore, in the present study, we investigated the effects of phlorotannins using a rat model of high-energy diet (HED)-induced hyperlipidemia. The results showed that the rats that were fed an HED and treated with phlorotannin-rich extract from A. nodosum and F. vesiculosus had significantly lower serum fasting blood sugar (FBS), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triacylglyceride (TG) and free fatty acids (FFAs) levels and hepatic TG level and had higher serum insulin, high-density lipoprotein cholesterol (HDL-C) levels and lipase activity in their fat tissues than in the case with the rats that were fed the HED alone. A histopathological analysis revealed that phlorotannin-rich extract could significantly reduce the size of adipocytes around the epididymis. In addition, the rats treated with phlorotannin-rich extract had significantly lowered interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities than did those in the HED group. These results suggested that the phlorotannin-rich extract stimulated lipid metabolism and may have promoted lipase activity in rats with HED-induced hyperlipidemia. Our results indicated that A. nodosum and F. vesiculosus, marine algae typically used as health foods, have strong antihyperlipidemic effects and may, therefore, be useful for preventing atherosclerosis. These algae may be incorporated into antihyperlipidemia pharmaceuticals and functional foods.


Subject(s)
Ascophyllum , Fucus , Hyperlipidemias , Metabolic Diseases , Male , Rats , Animals , Ascophyllum/metabolism , Lipid Metabolism , Hyperlipidemias/drug therapy , Hyperlipidemias/etiology , Metabolic Diseases/drug therapy , Plant Extracts/therapeutic use , Inflammation/drug therapy , Diet , Lipase/metabolism , Hypolipidemic Agents/therapeutic use , Cholesterol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL